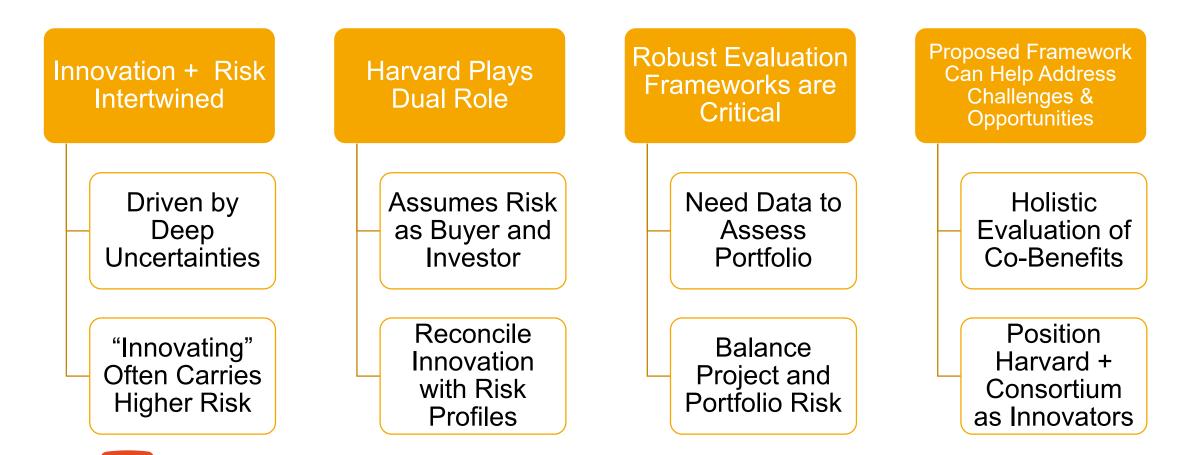
Innovation and Co-Benefits of Greenhouse Gas Offset Projects

Climate Solutions Living Lab Harvard University

#### Intro to Project

Our Climate Solutions Living Lab team has been tasked with supporting Harvard University and its affiliates in their efforts to lower their carbon footprint through the large-scale purchasing of greenhouse gas (GHG) emission credits.


Our **primary** support for the Consortium involves creating a tool to assess the co-benefits of various offset projects.



### Key Takeaways

- Innovation project criteria to meet Consortium priorities
- Overview of selected **co-benefits** 
  - Innovation
  - Scalability
  - Environmental Impact
  - Public Health
  - Diversity, Equity, Inclusion
- Introduction of model as tool for quantifying and comparing co-benefits of projects
- Recommendations for moving forward with tool and offset evaluation process

#### Innovation + Risk



#### Credibility

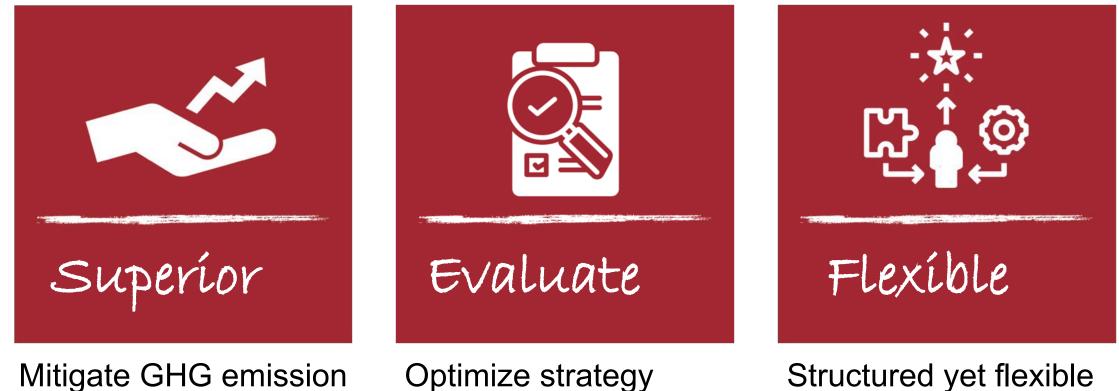
- 5 Carbon Offset Requirements:
  - 1. Real
  - 2. Additional
  - 3. Permanence
  - 4. Quantifiable/Verifiable
  - 5. Enforceable

#### **Examples of Standards/Verifiers**





## The Co-Benefits Valuation Model assumes credibility requirements have already been assessed and satisfied.


#### Preliminary Recommendations on Credibility, Innovation, & Risk

Define projects with high risk of "failure" in terms of credibility and potential for innovation + impact.



Form an Independent Assessment Committee to evaluate high-risk/high-reward projects.

#### **Co-Benefits**



Maximize co-benefits

Optimize strategy Identify gaps

Examine over time

### Innovation

#### Why?

Innovation is rarely evaluated as a co-benefit for offset projects in existing registries & rating schemes.

#### **Integration into Selection Process**

Evaluation of project proposals based on four dimensions of innovation:

- 1) product
- 2) process
- 3) social impact
- 4) risk-taking



### Scalability

#### Why?

Selection of projects should prioritize project *growth* and *resilience* – scalability is central to both.

#### **Integration into Selection Process**

Evaluation of project proposals based on three dimensions of scalability:

- 1) project design
- 2) returns to scale
- 3) market integration



#### **Environmental Impacts**


#### Why?

Many offset projects evaluate GHG emissions reduction in isolation – important to consider:

- Benefits of reducing GHG emissions on other environmental media
- Other offset benefits beyond emission reduction

#### Integration into selection process

It is important to consider other outcomes unrelated to emissions including 1) land use and biodiversity, 2) air quality, and 3) water quality



- Ensure healthy lives and Promote well-being
- Potential benefits

vs. Negative impacts

- Harmful
  - → Prevent Disease
    → Promote Health



# Diversity, Equity & Inclusion (DEI)

What is DEI? The commitment to valuing and structuring institutions to ensure:

**Diversity** of age, gender, race, religion, thought, and ++!

#### Other qualities to consider:

Accessibility for people with different physical and mental capacities Cultivate a feeling of **Belonging** for all people involved

#### Keep in mind!

- Diversity and Inclusion are relative concepts
- DEI is most effective when embedded in the project concept
- The most DEI-rich projects may be most in need of assistance



#### **Co-Benefits Valuation Model**

"All models are wrong, but some are useful". George E.P. Box.

- **Goal:** to provide a useful framework to quantitatively assess offset co-benefits, aggregating those assessments, and optimizing The Consortium's offset portfolio based on userdefined preferences.
- Deliverable: Excel Optimization Tool



#### Co-Benefits Valuation Model **Process**



- Input Co-Benefits Preferences
- Input Desired Investment

| Climate Lab Portfolio Optimization |             |                                                |
|------------------------------------|-------------|------------------------------------------------|
| Desired Attributes (Inputs)        |             |                                                |
| Innovation                         | 0.3         |                                                |
| Scalability                        | 0.1         | Subjective Concertium                          |
| Environmental                      | 0.1         | Subjective Consortium<br>Preferences (weights) |
| Public Health                      | 0.3         |                                                |
| DEI                                | 0.2         |                                                |
| Total (Constraint, Must = 1)       | 1           |                                                |
| Desired Investment                 | \$2,000,000 | Initial Investment                             |

Score Projects

|              | Projects                     | Project A | Project B | Project C | Project D | Project E | Project F | Project G | Project H | Project I | Project J |
|--------------|------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Innovation   | Product Innovation           | 0         | 0         | 1         | 2         | 1         | 1         | 3         | 3         | 3         | 5         |
|              | Social Impact                | 0         | 0         | 2         | 3         | 1         | 1         | 4         | 1         | 2         | 5         |
|              | Risk Taking                  | 0         | 0         | 2         | 2         | 1         | 1         | 5         | 1         | 4         | 5         |
|              | Innovation Total (Max 15)    | 0         | 0         | 5         | 7         | 3         | 3         | 12        | 5         | 9         | 15        |
|              |                              |           |           |           |           |           |           |           |           |           |           |
| Scalability  | Project Design               | 0         | 0         | 3         | 2         | 5         | 1         | 4         | 3         | 3         | 5         |
|              | Returns to Scale             | 0         | 0         | 2         | 1         | 5         | 1         | 4         | 4         | 3         | 5         |
|              | Market Integration           | 0         | 0         | 2         | 1         | 1         | 1         | 4         | 3         | 3         | 5         |
|              | Scalability Total (Max 15)   | 0         | 0         | 7         | 4         | 11        | 3         | 12        | 10        | 9         | 15        |
|              |                              |           |           |           |           |           |           |           |           |           |           |
| Environment  | tal Biological Diversity     | 0         | 0         | 3         | 4         | 1         | 1         | 2         | 5         | 2         | 2         |
|              | Air Quality                  | 0         | 0         | 2         | 5         | 1         | 1         | 3         | 4         | 3         | 3         |
|              | Water Quality                | 0         | 0         | 1         | 5         | 2         | 1         | 4         | 1         | 5         | 5         |
|              | Environmental Total (Max 15) | 0         | 0         | 6         | 14        | 4         | 3         | 9         | 10        | 10        | 10        |
|              |                              |           |           |           |           |           |           |           |           |           |           |
| Public Healt | h Extreme Weather Resilience | 0         | 0         | 3         | 4         | 5         | 3         | 3         | 5         | 3         | 3         |
|              | Illness Mitigation           | 0         | 0         | 5         | 3         | 1         | 3         | 2         | 5         | 4         | 4         |
|              | Food Security                | 0         | 0         | 4         | 4         | 0         | 4         | 1         | 5         | 5         | 2         |
|              | Public Health Total (Max 15) | 0         | 0         | 12        | 11        | 6         | 10        | 6         | 15        | 12        | 9         |
|              |                              |           |           |           |           |           |           |           |           |           |           |
| DEI          | Project Structure            | 0         | 0         | 2         | 4         | 4         | 2         | 3         | 4         | 5         | 3         |
|              | Project Concept & Design     | 0         | 0         | 3         | 5         | 3         | 3         | 4         | 4         | 5         | 4         |
|              | Project Impact               | 0         | 0         | 3         | 2         | 3         | 1         | 1         | 2         | 2         | 3         |
|              | Environmental Justice        | 0         | 0         | 4         | 3         | 2         | 2         | 1         | 3         | 3         | 4         |
|              | DEI Total (Max 20)           | 0         | 0         | 12        | 14        | 12        | 8         | 9         | 13        | 15        | 14        |



### Case Study

- Project A = high tech, innovation, and risk...potential for scale and high yields
- Project B = lower tech, less innovation, but also little risk...potential for secure gains, but not much more

Score Projects

|             | Projects                   | Project A | Project B |
|-------------|----------------------------|-----------|-----------|
| Innovation  | Product Innovation         | 5         | 1         |
|             | Social Impact              | 5         | 2         |
|             | Risk Taking                | 4         | 1         |
|             | Innovation Total (Max 15)  | 14        | 4         |
|             |                            |           |           |
| Scalability | Project Design             | 3         | 2         |
|             | Returns to Scale           | 4         | 1         |
|             | Market Integration         | 5         | 2         |
|             | Scalability Total (Max 15) | 12        | 5         |

Innovation Scalability



Score Projects

|               | Projects                     | Project A | Project B |
|---------------|------------------------------|-----------|-----------|
| Environmental | Biological Diversity         | 3         | 4         |
|               | Air Quality                  | 3         | 3         |
|               | Water Quality                | 4         | 2         |
|               | Environmental Total (Max 15) | 10        | 9         |
|               |                              |           |           |
| Public Health | Extreme Weather Resilience   | 1         | 3         |
|               | Illness Mitigation           | 2         | 3         |
|               | Food Security                | 2         | 3         |
|               | Public Health Total (Max 15) | 5         | 9         |
|               |                              |           |           |
| DEI           | Project Structure            | 2         | 3         |
|               | Project Concept & Design     | 1         | 4         |
|               | Project Impact               | 2         | 3         |
|               | Environmental Justice        | 3         | 4         |
|               | DEI Total (Max 20)           | 8         | 14        |

Public Health

DEI

Environmental ~

- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |                        |
|------------------------------------------------|-----------|-----------|------------------------|
| Probability of Failure (Risk)                  | 40%       | 5%        | → Risk, from framework |
|                                                | 40        | 44        |                        |
| Total Score (Max 80)                           | 49        | 41        |                        |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       |                        |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    |                        |
| Price Comparison                               | 0.79      | 0.53      |                        |
| Cost/Offset (\$)                               | \$300     | \$200     |                        |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      |                        |



- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |                       |
|------------------------------------------------|-----------|-----------|-----------------------|
| Probability of Failure (Risk)                  | 40%       | 5%        |                       |
|                                                |           |           |                       |
| Total Score (Max 80)                           | 49        | 41        | Aggregate project sco |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       |                       |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    |                       |
| Price Comparison                               | 0.79      | 0.53      |                       |
| Cost/Offset (\$)                               | \$300     | \$200     |                       |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      |                       |



- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |                                        |
|------------------------------------------------|-----------|-----------|----------------------------------------|
| Probability of Failure (Risk)                  | 40%       | 5%        |                                        |
| Total Saara (May 80)                           | 49        | 41        |                                        |
| Total Score (Max 80)                           | 49        | 41        |                                        |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       | Adjusted score =                       |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    | Preference Weights * Co-Benefit Scores |
| Price Comparison                               | 0.79      | 0.53      |                                        |
| Cost/Offset (\$)                               | \$300     | \$200     |                                        |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      |                                        |



- Input Project Risk Factors
- Outputs

| Projects                                             | Project A | Project B |                                      |
|------------------------------------------------------|-----------|-----------|--------------------------------------|
| Probability of Failure (Risk)                        | 40%       | 5%        |                                      |
| $T_{a,b,1} \in \{\mathbf{M}_{a,a}, \mathbf{Q}_{b}\}$ | 40        | 41        |                                      |
| Total Score (Max 80)                                 | 49        | 41        |                                      |
| Adjusted Score (For Preferences)                     | 9.5       | 8.1       |                                      |
|                                                      |           |           |                                      |
| Adjusted Score Comparison                            | 102.48%   | 87.38%    | Adjusted score comparison =          |
| Price Comparison                                     | 0.79      | 0.53      | Adjusted Score                       |
|                                                      |           |           | Average of Doutfolio Adjusted Coores |
| Cost/Offset (\$)                                     | \$300     | \$200     | Average of Portfolio Adjusted Scores |
| Project Return (Adjusted Score/Adjusted Price)       | 130%      | 166%      |                                      |

Intuition: how Project \_\_\_\_ compares to the rest of the portfolio...100% is average portfolio desirability

- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |                                      |
|------------------------------------------------|-----------|-----------|--------------------------------------|
| Probability of Failure (Risk)                  | 40%       | 5%        |                                      |
| Total Score (Max 80)                           | 49        | 41        |                                      |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       |                                      |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    |                                      |
| Price Comparison                               | 0.79      | 0.53      | Price comparison =                   |
| Cost/Offset (\$)                               | \$300     | \$200     | Cost Per Offset                      |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      | Average of Portfolio Costs Per Offse |

Intuition: how Project \_\_\_\_ compares to the rest of the portfolio...1 is average portfolio cost per offset

- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |
|------------------------------------------------|-----------|-----------|
| Probability of Failure (Risk)                  | 40%       | 5%        |
|                                                |           |           |
| Total Score (Max 80)                           | 49        | 41        |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    |
| Price Comparison                               | 0.79      | 0.53      |
| Cost/Offset (\$)                               | \$300     | \$200     |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      |



- Input Project Risk Factors
- Outputs

| Projects                                       | Project A | Project B |                  |
|------------------------------------------------|-----------|-----------|------------------|
| Probability of Failure (Risk)                  | 40%       | 5%        |                  |
| Total Score (Max 80)                           | 49        | 41        |                  |
| Adjusted Score (For Preferences)               | 9.5       | 8.1       |                  |
| Adjusted Score Comparison                      | 102.48%   | 87.38%    |                  |
| Price Comparison                               | 0.79      | 0.53      |                  |
| Cost/Offset (\$)                               | \$300     | \$200     |                  |
| Project Return (Adjusted Score/Adjusted Price) | 130%      | 166%      | 🗕 🗕 Project Retu |

**Intuition:** how Project \_\_\_\_'s comparative cobenefit desirability relates to comparative cost. Greater than 100% = more 'bang for buck" **within** portfolio Adjusted Score Comparison

=

Price Comparison

#### **Portfolio Optimization**

|             | Project A    | Project B    | Project C | Project D | Project E   | Project F | Project G | Project H | Project I    | Project J   |
|-------------|--------------|--------------|-----------|-----------|-------------|-----------|-----------|-----------|--------------|-------------|
| Return      | 130%         | 166%         | 80%       | 117%      | 108%        | 42%       | 85%       | 145%      | 92%          | 128%        |
| Risk        | 40%          | 5%           | 30%       | 50%       | 20%         | 10%       | 40%       | 5%        | 5%           | 10%         |
| Desired P   | ortfolio Ret | urn (Maximiz | (ved)     | 0.00%     |             |           |           | Portfo    | lio Return   | =           |
| Portfolio I |              | (            |           | 0.00%     |             |           | (Proj     | ject Reti | urn * Projec | ct Allocati |
| Portfolio A | Allocation   |              |           |           | Invesment   |           |           | Portfo    | lio Risk =   |             |
| Project A   |              |              |           | 0.00%     | \$O         | 0         | (Droi     | aat Diak  | * Draigat    | Allocation  |
| Project B   |              |              |           | 0.00%     | \$O         | 0         | (Proj     |           | Project_     | Allocation  |
| Project C   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project D   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project E   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project F   |              |              |           | 0.00%     | \$0         | 0         |           |           |              |             |
| Project G   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project H   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project I   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Project J   |              |              |           | 0.00%     | \$O         | 0         |           |           |              |             |
| Total (Con  | nstraint)    |              |           | 0.00      | Total Offse | ts 0      |           |           |              |             |

### Optimization Example #1

Maximizing Portfolio Return

|        | Project A | Project B | Project C | Project D | Project E | Project F | Project G | Project H | Project I | Project J |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Return | 130%      | 166%      | 80%       | 117%      | 108%      | 42%       | 85%       | 145%      | 92%       | 128%      |
| Risk   | 40%       | 5%        | 30%       | 50%       | 20%       | 10%       | 40%       | 5%        | 5%        | 10%       |

| Desired Portfolio Return (Maximized) | 166.02% |                      |        |
|--------------------------------------|---------|----------------------|--------|
| Portfolio Risk                       | 5.00%   |                      |        |
| Portfolio Allocation                 |         | Invesment            |        |
| Project A                            | 0.00%   | \$O                  | 0      |
| Project B                            | 100.00% | \$2,000,000          | 10,000 |
| Project C                            | 0.00%   | \$O                  | 0      |
| Project D                            | 0.00%   | \$O                  | 0      |
| Project E                            | 0.00%   | \$O                  | 0      |
| Project F                            | 0.00%   | \$O                  | 0      |
| Project G                            | 0.00%   | \$O                  | 0      |
| Project H                            | 0.00%   | \$O                  | 0      |
| Project I                            | 0.00%   | \$O                  | 0      |
| Project J                            | 0.00%   | \$O                  | 0      |
| Total (Constraint)                   | 1.00    | <b>Total Offsets</b> | 10,000 |



### Optimization Example #2

Maximizing Portfolio Return, Risk = 20%

|        | Project A | Project B | Project C | Project D | Project E | Project F | Project G | Project H | Project I | Project J |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Return | 130%      | 166%      | 80%       | 117%      | 108%      | 42%       | 85%       | 145%      | 92%       | 128%      |
| Risk   | 40%       | 5%        | 30%       | 50%       | 20%       | 10%       | 40%       | 5%        | 5%        | 10%       |

| Desired Portfolio Return (Maximized) | 150.50% |                      |       |
|--------------------------------------|---------|----------------------|-------|
| Portfolio Risk                       | 20.00%  |                      |       |
| Portfolio Allocation                 |         | Invesment            |       |
| Project A                            | 42.86%  | \$857,143            | 2,857 |
| Project B                            | 57.14%  | \$1,142,857          | 5,714 |
| Project C                            | 0.00%   | \$O                  | 0     |
| Project D                            | 0.00%   | \$O                  | 0     |
| Project E                            | 0.00%   | \$0                  | 0     |
| Project F                            | 0.00%   | \$O                  | 0     |
| Project G                            | 0.00%   | \$0                  | 0     |
| Project H                            | 0.00%   | \$0                  | 0     |
| Project I                            | 0.00%   | \$0                  | 0     |
| Project J                            | 0.00%   | \$0                  | 0     |
| Total (Constraint)                   | 1.00    | <b>Total Offsets</b> | 8,571 |

#### **Optimization Example #3**

Maximizing Portfolio Return, Risk = 20%, Total Offsets = 7,000

|        | Project A | Project B | Project C | Project D | Project E | Project F | Project G | Project H | Project I | Project J |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Return | 130%      | 166%      | 80%       | 117%      | 108%      | 42%       | 85%       | 145%      | 92%       | 128%      |
| Risk   | 40%       | 5%        | 30%       | 50%       | 20%       | 10%       | 40%       | 5%        | 5%        | 10%       |

| Desired Portfolio Return (Maximized) | 140.52% |                      |       |
|--------------------------------------|---------|----------------------|-------|
| Portfolio Risk                       | 20.00%  |                      |       |
| Portfolio Allocation                 |         | Invesment            |       |
| Project A                            | 42.86%  | \$857,143            | 2,857 |
| Project B                            | 10.00%  | \$200,000            | 1,000 |
| Project C                            | 0.00%   | \$O                  | 0     |
| Project D                            | 0.00%   | \$O                  | 0     |
| Project E                            | 0.00%   | \$O                  | 0     |
| Project F                            | 0.00%   | \$O                  | 0     |
| Project G                            | 0.00%   | \$O                  | 0     |
| Project H                            | 47.14%  | \$942,857            | 3,143 |
| Project I                            | 0.00%   | \$O                  | 0     |
| Project J                            | 0.00%   | \$O                  | 0     |
| Total (Constraint)                   | 1.00    | <b>Total Offsets</b> | 7,000 |



#### Supporting Recommendations

Build Internal Capacity

to support smallscale and/or innovative projects Issue Project Developer Templates to help project developers understand priorities and valuation methods

#### Streamline RFPs

to ensure that proposals include all information needed for the co-benefits valuation

#### Start a Project Incubator

to help projects get from concept to implementation

Engage in Project Outreach

to increase the number of small-scale and community developed projects Grow pipeline for Harvard-led projects

to better engage the resources available throughout the University

### Thank You!



#### Team & QAs



Joy Jackson

SM Candidate in Technology and Policy at MIT Institute for Data, Systems, and Society



Yuan-Hsin Chen

MPH Candidate at Harvard T.H. Chan School of Public Health



**Jake Sortor** 

JD/MBA Candidate at Harvard Law School and Harvard Business School



Kendra Aga Khan

Mid-Career Master of Public Administration at Harvard Kennedy School of Government



Maura Schwitter

Master of Public Health Student at Harvard T.H. Chan School of Public Health

- Assess climate vulnerability
- Prevent disease deterioration
- Help adaptation



- Aware materials used and follow chemical regulations
- Prevent leakage or clean up contaminated sites
- Toxic-free product by design



- Minimize GHG
   during food product life cycle
- Ensure food security

and prevent climate impacts

• Promote

Equitable food distribution Sustainable agriculture

