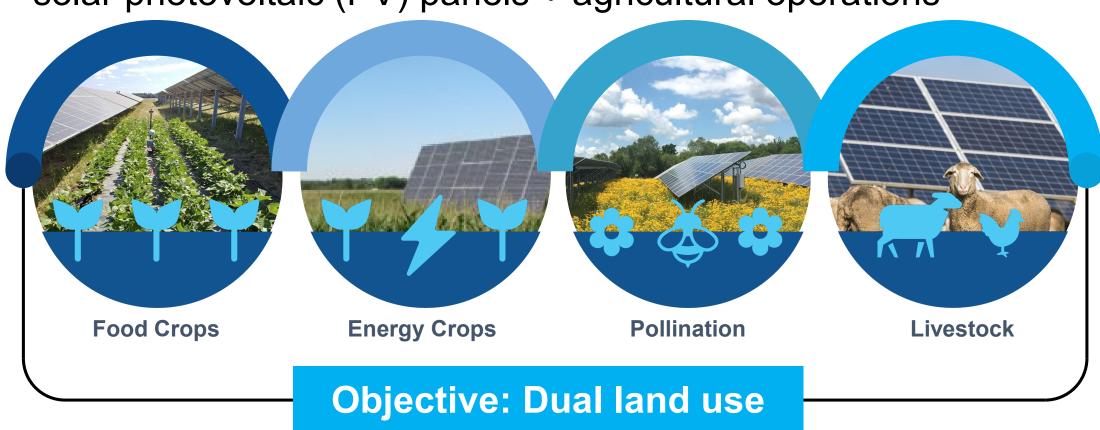


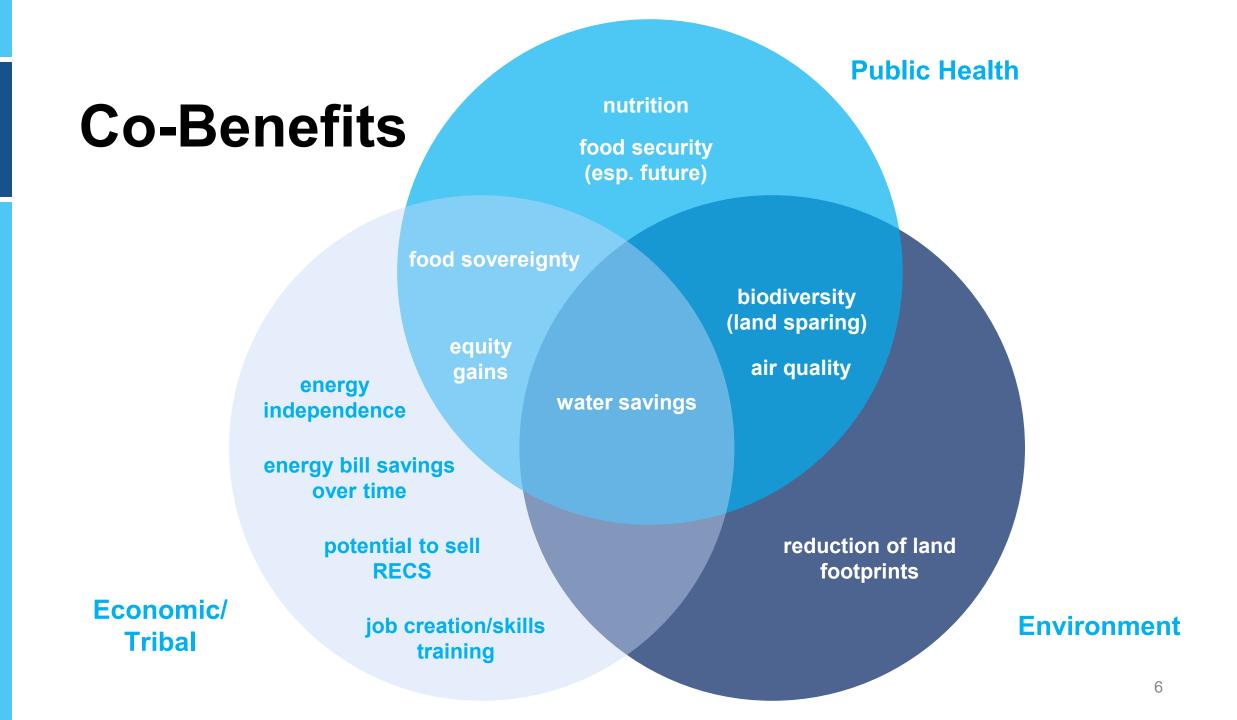
The Quapaw Nation

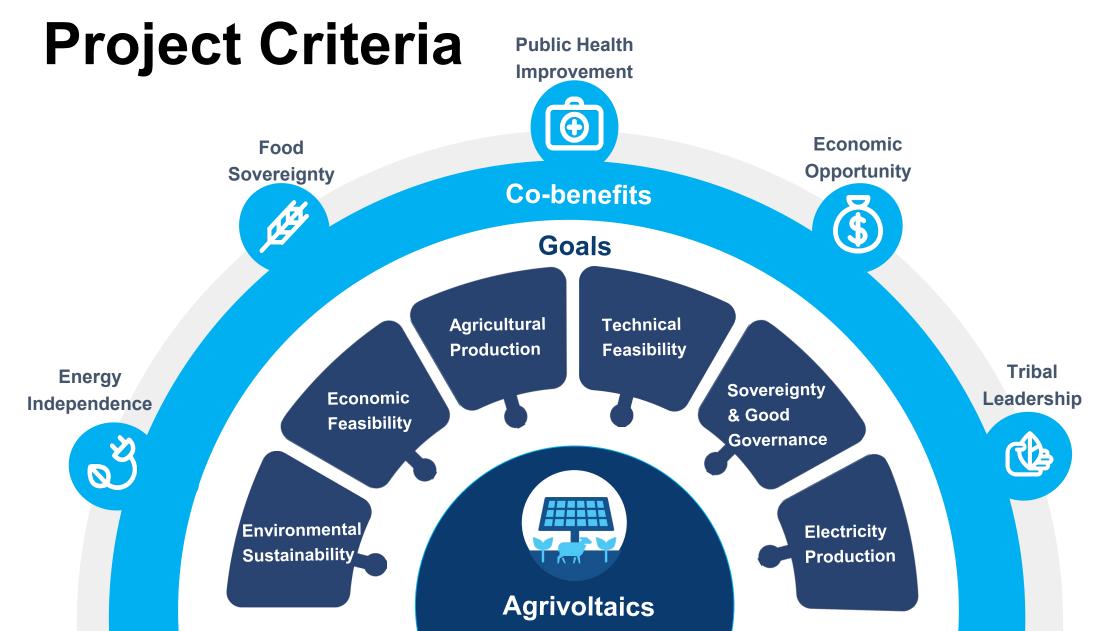
A Partnership for Climate Action

Addressing Land Use Tensions

Demand for **renewable energy** (e.g., solar)




Tradeoff between **energy** vs. **food production**



Agrivoltaics

solar photovoltaic (PV) panels + agricultural operations

Ground mount solar

Ground mount solar
+ crops

Ground mount solar+ grazing

Microgrid [solar + storage] + agrivoltaics

Scenarios

Attributes

- Ground mount solar
- No agrivoltaics

- Technical feasibility
- Economic feasibility
- Environmental Sustainability

Forefront Power, Illinois
5 MW DC
Ground Mount Solar

Ute Tribe, Colorado

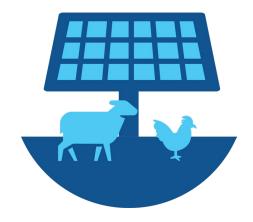
1.3 MW DC

Ground Mount Solar

Attributes

- Ground mount solar
- Crop/pollinator agrivoltaics

- Agricultural production
- Technical feasibility
- Environmental Sustainability


56 Brewing/Bare Honey, Wisconsin Various Agrivoltaic Pollinator Projects

Jack's Solar Garden, Colorado
1.2 MW
Vegetable Farm and Artist Community

Attributes

- Ground mount solar
- Grazing agrivoltaics

- Agricultural production
- Environmental Sustainability

Blue Prairie Solar, Wisconsin
3.1 MW DC
Sheep Grazing

University of Minnesota
50 kW Pilot Project
Cow Grazing

Attributes

- Microgrid [solar + storage]
- Agrivoltaics

- Agricultural production
- Environmental Sustainability
- Sovereignty & Good Governance

Blue Lake Rancheria, California

420 kW DC Solar

1.2 MWh Battery Storage

Microgrid [No Agriculture]

Ishkonige Nawadide Solar, Wisconsin 500 MW DC Solar

1 MWh Battery Storage Microgrid [Crops]

How do metrics add value?

Setting requirements

 Enables a more specific Request for Proposal (RFP), improving the quality of project proposals submitted by contractors

Visualizing tradeoffs

- Enables efficient comparison of projects with different benefits and limitations
- Enables comparison of quantitative and qualitative impacts
- Allows project proposals to be compared against benchmarks and case studies

Evaluation tools

	Category	Description	Weighting
	Electricity production	Does the project generate sufficient electricity, and do so reliably?	12
	Agricultural production	Does the project create sufficient dual-use land for agricultural uses?	12
ALS	Environmental sustainability	Will the project reduce GHG emissions and align with the tribe's ecological values?	12
05	Economic feasibility	Is the project cost-effective, and are the financial and legal risks bearable?	10
	Technical feasibility	Is the project technically sound, with limited anticipable risks?	10
	Sovereignty and good governance	Does the project create tribal ownership and community engagement?	8
CO-BENEFITS	Energy independence	Does the project reduce the tribe's reliance on imported electricity?	7
	Food sovereignty	Does the project reduce the tribe's reliance on food imports?	8
	Public health improvement	Does the project improve the tribe's air, water, nutrition, and general well-being?	5
	Economic opportunity	Does the project generate revenue and jobs for the tribe?	8
	Tribal leadership	Does the project create opportunities for knowledge sharing with other tribes?	8
		TOTAL (must add up to 100)	100

Step 1

Decide on relative weights of the possible goals and cobenefits (illustrative)

Evaluation tools

Economic op

Category Description Weighting Electricity production Does the project generate sufficient electricity, and do so reliably? Does the project create sufficient dual-use land for agricultural uses? Agricultural production Environmental sustainability Will the project reduce GHG emissions and align with the tribe's ecological values? 10 Economic feasibility Is the project cost-effective, and are the financial and legal risks bearable? 10 echnical feasibility Is the project technically sound, with limited anticipable risks? Does the project create tribal ownership and community engagement?

Step 2

For each project, quantify performance along the different criteria

	Scoring guidelines				
Criteria	1	2	3	4	
One-time capital expenditures (CAPEX)	>\$6 m illion	\$5-6 m illion	\$4-5 million	<\$4 m illion	
Annual operating expenditures (OPEX)	>\$18,000	\$9,000-18,000	\$2,000-9,000	<\$2 ,000	
Financial and contracting risk	High risk	Moderate risk	Low risk	Minimal or no risk	
Eligibility for grant funding	No			Yes	
Insurability	High risk	Moderate risk	Low risk	Minimal or no risk	
Additional grid connection costs	No			Yes	

Potential Risks

food safety

crop / livestock failure

toxic materials

less likely

local habitat impact

electrical accidents

high impact

natural disasters

future contract issues

cost overruns

land rights issues

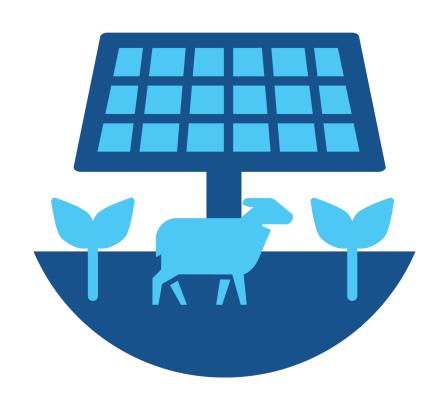
more likely

insurance issues

- Public Health
- Environment
- Legal/Economic

low impact

Key Takeaways


Multiple priorities

- Climate mitigation
- Agricultural production

Agrivoltaics

Potential solution enabling renewable energy and dual land use

- Co-benefits
- Scalability

THANK YOU!

Erin O'Dwyer
HSPH

Andrew Wei

Charlotte Ross

Aoife BlanchardGSAS

Mauro Morabito

Ethica Burt GSD

Nobuhiro Mitsuoka Subject Matter Expert

Special thanks to the Teaching Team and our partners at the Quapaw Nation!